Home » Blog » Find all x satisfying equations given in terms of sinh

Find all x satisfying equations given in terms of sinh

Let c be the number such that \sinh c = \frac{3}{4}. Find all x that satisfy the given equations.

  1. \log (e^x + \sqrt{e^{2x} + 1}) = c.
  2. \log (e^x - \sqrt{e^{2x} - 1}) = c.

  1. We are given \sinh c = \frac{3}{4}. From the formula for \sinh this means

        \[ \frac{e^c - e^{-c}}{2} = \frac{3}{4}. \]

    Then, from the given equation we have

        \[ \log (e^x + \sqrt{e^{2x} + 1}) = c \quad \implies \quad e^x + \sqrt{e^{2x} + 1} = e^c. \]

    Thus,

        \[ e^{-c} = \frac{1}{e^x + \sqrt{e^{2x} + 1}}. \]

    So, then we have

        \begin{align*}  \frac{3}{4} = \frac{e^c - e^{-c}}{2} &= \frac{1}{2} \left( e^x + \sqrt{e^{2x} + 1}  - \frac{1}{e^x + \sqrt{e^{2x}+1}} \right) \\[9pt]  &= \frac{1}{2} \left( \frac{(e^x + \sqrt{e^{2x}+1})^2 - 1}{e^x + \sqrt{e^{2x}+1}} \right) \\[9pt]  &= \frac{e^{2x} + 2e^x \sqrt{e^{2x}+1} + e^{2x}+1 - 1}{2(e^x + \sqrt{e^{2x}+1})} \\[9pt]  &= \frac{e^{2x} + e^x \sqrt{e^{2x}+1}}{e^x + \sqrt{e^{2x}+1}} \\[9pt]  &= e^x \end{align*}

    Therefore we have

        \[ e^x = \frac{3}{4} \quad \implies \quad x = \log 3 - \log 4 = \log 3 - 2 \log 2.\]

  2. There can be no x which satisfy the given equation. As in part (a), we use the definition of \sinh x to obtain the equation,

        \[ \sinh c = \frac{3}{4} \quad \implies \quad e^c - e^{-c} = \frac{3}{2}. \]

    Next, we use the equation given in the problem to write,

        \begin{align*}  &&\log (e^x - \sqrt{e^{2x} - 1}) &= c \\[9pt]  \implies && e^x - \sqrt{e^{2x} -1} &= e^c \\[9pt] \implies && \frac{(e^x - \sqrt{e^{2x} - 1})(e^x + \sqrt{e^{2x}-1})}{e^x + \sqrt{e^{2x}-1}} &= e^c \\[9pt]  \implies && \frac{e^{2x} - e^{2x} + 1}{e^x + \sqrt{e^{2x}-1}} &= e^c \\[9pt]  \implies && \frac{1}{e^x + \sqrt{e^{2x}-1}} &= e^c. \end{align*}

    Furthermore, we can obtain an expression for e^{-c} by considering

        \[ e^x - \sqrt{e^{2x} - 1} &= e^c \quad \implies \quad \frac{1}{e^x - \sqrt{e^{2x} - 1}} &= e^{-c}. \]

    Putting these expressions for e^c and e^{-c} into our original equation we have

        \begin{align*}  \frac{3}{2} &= e^c - e^{-c} \\[9pt]  &= \left( \frac{1}{e^x + \sqrt{e^{2x}-1}} \right) - \left( \frac{1}{e^x - \sqrt{e^{2x}-1}} \right) \\[9pt]  &= \frac{e^x - \sqrt{e^{2x}-1} - e^x - \sqrt{e^{2x}-1}}{(e^x + \sqrt{e^{2x}-1})(e^x - \sqrt{e^{2x}-1})} \\[9pt]  &= \frac{ -2 \sqrt{e^{2x}-1}}{e^{2x} - e^{2x} + 1} \\[9pt]  &= -2\sqrt{e^{2x}-1} \end{align*}

    But this implies

        \[ \sqrt{e^{2x}-1} = -\frac{3}{4} \]

    which is impossible. Hence, there can be no real x satisfying this equation.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):