Home » Blog » Find continuous functions satisfying given conditions

Find continuous functions satisfying given conditions

Find continuous functions which satisfy the given conditions for all x \in \mathbb{R}.

  1. \displaystyle{ \int_0^x f(t) \, dt = e^x}.
  2. \displaystyle{ \int_0^{x^2} f(t) \, dt = 1 - 2^{x^2}}.
  3. \displaystyle{ \int_0^x f(t) \, dt = f^2(x) - 1}.

  1. No such function can exist since for x = 0 we have

        \[ \int_0^x f(t) \, dt = \int_0^0 f(t) \, dt = 0 \neq e^0 = 1. \]

  2. Taking derivatives of both sides of the given equation we have

        \begin{align*}  &&\frac{d}{dx} \left(\int_0^{x^2} f(t) \, dt\right) &= \frac{d}{dx} \left( 1 - 2^{(x^2)} \right) \\[9pt]  \implies && (2x)(f(x^2)) &= \frac{d}{dx} \left(1 - e^{x^2 \log 2}  \right) \\[9pt]  \implies && (2x)(f(x^2)) &= -(2x \log 2) e^{x^2 \log 2} \\[9pt]  \implies && f(x^2) &= -(\log 2)(2^{(x^2)}) \\[9pt]  \implies && f(x) &= - 2^x \log 2. \end{align*}

  3. Again, taking derivatives of both sides we have

        \begin{align*}  &&\frac{d}{dx} \left( \int_0^x f(t) \, dt \right) &= \frac{d}{dx} \left( f^2(x) - 1 \right) \\[9pt]  \impies && f(x) &= 2f(x)f'(x) \\[9pt]  \implies && 1 &= 2f'(x) \end{align*}

    at all points x such that f(x) \neq 0. (Since \int_0^x f(t) \, dt = f^2(x) - 1 is not satisfied by the zero function f(x) = 0, we know there are real x such that f(x) \neq 0.) Then, integrating

        \[ f'(x) = \frac{1}{2} \quad \implies \quad f(x) = \frac{1}{2} x + C. \]

    Now, we can solve for C by evaluating the given identity at x = 0,

        \begin{align*}  && \int_0^x f(t) \, dt &= f^2 (x) - 1 \\[9pt] \implies && \int_0^0 f(t) \, dt &= f^2 (0) - 1 \\[9pt] \implies && 0 &= \left( \frac{0}{2} + C\right)^2 - 1\\[9pt] \implies && 0 &= C^2 - 1 \\[9pt] \implies && C &= \pm 1. \end{align*}

    Therefore, we have

        \[ f(x) = \frac{1}{2} x \pm 1. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):