Home » Blog » Evaluate the integral of (x2 + 5)1/2

Evaluate the integral of (x2 + 5)1/2

Compute the following integral.

    \[ \int \sqrt{x^2+5} \, dx. \]


First, we want to make the substitution

    \begin{align*}  x &= \sqrt{5} \tan s & \implies \qquad dx &= \sqrt{5} \sec^2 s \, ds \\  x^2 &= 5 \tan^2 s. \end{align*}

Therefore, we have

    \begin{align*}   \int \sqrt{x^2+5} \, dx &= \int \sqrt{5 \tan^2 s + 5} (\sqrt{5} \sec^2 s) \, ds \\[9pt]  &= 5 \int \sqrt{\tan^2 s + 1} \sec^2 s \, ds \\[9pt]  &= 5 \int \sec^3 s \, ds. \end{align*}

Now, we use integration by parts, letting

    \begin{align*}  u &= \sec s & \implies && du &= \sec s \tan s \, ds \\ dv &= \sec^2 s \, ds & \implies && v &= \tan s. \end{align*}

Therefore, we have

    \begin{align*}  \int \sec^3 s \, ds &= \sec s \tan s - \int \tan^2 s \sec s \, ds \\[9pt]  &= \sec s \tan s - \int \sec s (\sec^2 s -1) \, ds \\[9pt]  &= \sec s \tan s - \int \sec^3 s \, ds + \int \sec s \, ds. \end{align*}

Moving the \int \sec^3 s \, ds back to the left side we have

    \begin{align*}  && 2 \int \sec^3 s \, ds &= \sec s \tan s + \int \sec s \, ds \\[9pt]  \implies && \int sec^3 s \, ds &= \frac{1}{2} \sec s \tan s + \frac{1}{2} \int \sec s \, ds \\[9pt]  &&&= \frac{1}{2} \sec s \tan s + \frac{1}{2} \log |\sec s + \tan s| + C. \end{align*}

Plugging this back in above we have,

    \begin{align*}  \int \sqrt{x^2+5} \, dx &= 5 \int \sec^3 s \, ds \\[9pt]  &= \frac{5}{2} \sec s \tan s + \frac{5}{2} \log | \sec s + \tan s| + C \\[9pt]  &= \frac{5}{2} \sec \left( \arctan \frac{x}{\sqrt{5}} \right) \frac{x}{\sqrt{5}} + \frac{5}{2} \log \left| \sec \left( \arctan \frac{x}{\sqrt{5}} \right) + \frac{x}{\sqrt{5}} \right| + C. \end{align*}

Then we note that

    \[ \sec \left( \arctan \frac{x}{\sqrt{5}} \right) = \frac{\sqrt{x^2+5}}{\sqrt{5}}. \]

(If you don’t remember your trigonometry, which I usually don’t, you can figure things like this out by drawing the triangle. Since \theta = \arctan \frac{x}{\sqrt{5}} means you have a right triangle with legs of length x and \sqrt{5}. That means the hypotenuse has length \sqrt{x^2+5}. So, \cos \theta = \frac{x}{\sqrt{x^2+5}} which then gives the above result for \sec \theta.)
Plugging this back in we then have

    \begin{align*}  \int \sqrt{x^2+5} \, dx &= \frac{5}{2} \sec \left( \arctan \frac{x}{\sqrt{5}} \right) \frac{x}{\sqrt{5}} + \frac{5}{2} \log \left| \sec \left( \arctan \frac{x}{\sqrt{5}} \right) + \frac{x}{\sqrt{5}} \right| + C \\[9pt]  &= \frac{x}{2} \sqrt{x^2+5} + \frac{5}{2} \log \left| \frac{x + \sqrt{x^2+5}}{\sqrt{5}} \right| + C \\[9pt]  &= \frac{x}{2} \sqrt{x^2+5} + \frac{5}{2} \log \left| x + \sqrt{x^2+5} \right| - \frac{5}{2} \log \sqrt{5} + C \\[9pt]  &= \frac{x}{2} \sqrt{x^2+5} + \frac{5}{2} \log \left| x + \sqrt{x^2+5} \right| + C. \end{align*}

(Where we absorbed \frac{5}{2} \log \sqrt{5} into the constant in the final line, since it is just a constant.)

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):