Home » Blog » Evaluate the integral of 1 / (a2sin2 x + b2cos2 x)

Evaluate the integral of 1 / (a2sin2 x + b2cos2 x)

Compute the following integral.

    \[ \int \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x} \qquad \text{for} \quad ab \neq 0. \]


Since ab \neq 0 implies a \neq 0 and b \neq 0 we know \frac{1}{a} and \frac{1}{b} exist, so we can divide by a and b whenever we want. First, we divide the numerator and denominator by \cos^2 x to obtain

    \[ \int \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x} = \int \frac{\sec^2 x \, dx}{a^2 \tan^2 x + b^2} = \frac{1}{a^2} \int \frac{\sec^2 x \, dx}{\tan^2 x + \left( \frac{b}{a} \right)^2}. \]

Then we make the substitution u = \tan x so du = \sec^2 x \, dx. Therefore,

    \begin{align*}  \int \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x} &= \frac{1}{a^2} \int \frac{\sec^2 x \, dx}{\tan^2 x + \left( \frac{b}{a} \right)^2} \\[9pt]  &= \frac{1}{a^2} \int \frac{du}{u^2 + \left( \frac{b}{a} \right)^2} \\[9pt]  &= \frac{1}{b^2} \int \frac{du}{\left( \frac{a}{b} \right)^2 u^2 + 1}. \end{align*}

Next, we make another substitution. This time let t = \frac{a}{b} u which implies dt = \frac{a}{b} \, du. Therefore,

    \begin{align*}  \frac{1}{b^2} \int \frac{du}{\left( \frac{a}{b} \right)^2 u^2 + 1} &= \frac{1}{ab} \int \frac{dt}{1+t^2} \\[9pt]  &= \frac{1}{ab} \arctan t + C \\[9pt]  &= \frac{1}{ab} \arctan \left( \frac{a}{b} u \right) + C \\[9pt]  &= \frac{1}{ab} \arctan \left( \frac{a}{b} \tan x \right) + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):