Home » Blog » Determine some properties of the integral of et / t

Determine some properties of the integral of et / t

Let

    \[ F(x) = \int_1^x \frac{e^t}{t} \, dt \qquad \text{for} \quad x > 0. \]

  1. Find all values of x > 0 such that log x \leq F(x).
  2. Prove that

        \[ \int_1^x \frac{e^t}{t+a} \, dt = e^{-a} (F(x+a) - F(1+a)). \]

  3. Similar to part (b), find expressions for

        \[ \int_1^x \frac{e^{at}}{t} \, dt, \qquad \int_1^x \frac{e^t}{t^2} \, dt, \qquad \int_1^x \e^{\frac{1}{t}} \, dt. \]


  1. Recalling the definition of \log x as the integral,

        \[ \log x = \int_1^x \frac{1}{t} \, dt, \]

    We compute,

        \[ F(x) - \log x = \int_1^x \frac{e^t}{t} \, dt - \int_1^x \frac{1}{t} \, dt = \int_1^x \frac{e^t -1}{t} \, dt. \]

    Then, since

        \[ \frac{e^t - 1}{t} \geq 0 \qquad \text{for all } t > 0, \]

    we have

        \[ \int_1^x \frac{e^t - 1}{t} \, dt \geq 0 \qquad \text{if} \quad x \geq 1, \]

    and

        \[ \int_1^x \frac{e^t - 1}{t} \, dt = - \int_x^1 \frac{e^t - 1}{t} \, dt < 0 \qquad \text{if} \quad x < 1. \]

    Hence, the set of x such that \log x \leq F(x) is all real x \geq 1.

  2. Proof. We start by computing,

        \begin{align*}  \int_1^x \frac{e^t}{t+a} &= \frac{1}{e^a} \int_1^x \frac{e^t e^a}{t+a} \, dt \\[9pt]  &= e^{-a} \int_1^x \frac{e^{t+a}}{t+a} \, dt. \end{align*}

    Then, using the translation invariance of the integral,

        \begin{align*}  e^{-a} \int_1^x \frac{e^{t+a}}{t+a} \, dt &= e^{-a} \int_{1+a}^{x+a} \frac{e^{(t-a)+a}}{(t-a)+a} \, dt \\[9pt]  &= e^{-a} \int_{1+a}^{x+a} \frac{e^t}{t} \, dt \\[9pt]  &= e^{-a} \left( \int_1^{x+a} \frac{e^t}{t} \, dt - \int_1^{1+a} \frac{e^t}{t} \, dt \right) \\[9pt]  &= e^{-a} (F(x+a) - F(1+a)). \qquad \blacksquare \end{align*}

  3. We claim the following formulas hold:

        \begin{align*}   \int_1^x \frac{e^{at}}{t} \, dt &= F(ax) - F(a) \\[10pt]  \int_1^x \frac{e^t}{t^2} \, dt &= F(x) - \frac{e^x}{x} + e \\[10pt]  \int_1^x e^{\frac{1}{t}} \, dt &= xe^{frac{1}{x}} - e - F \left( \frac{1}{x} \right). \end{align*}

    Proof. Making the substitution s = at, ds = a \, dt we have

        \begin{align*}   \int_1^x \frac{e^{at}}{t} \, dt &= \int_a^{ax} \frac{e^s}{\frac{s}{a}} \frac{1}{a} \, ds \\[9pt]  &= \int_a^{ax} \frac{e^s}{s} \, ds \\[9pt]  &= \int_1^{ax} \frac{e^s}{s} \, ds - \int_1^a \frac{e^s}{s} \, ds \\[9pt]  &= F(ax) - F(a). \qquad \blacksquare \end{align*}

    Proof. To prove this identity we integrate by parts, letting

        \begin{align*}  u &= e^t & \implies && du &= e^t \, dt \\ dv &= \frac{1}{t^2} \, dt & \implies && v &= -\frac{1}{t}.  \end{align*}

    Therefore,

        \begin{align*}  \int_1^x \frac{e^t}{t^2} \, dt &= \left. -\frac{e^t}{t}\right|_1^x + \int_1^x \frac{e^t}{t} \, dt \\[9pt]  &= e - \frac{e^x}{x} + F(x) \\[9pt]  &= F(x) - \frac{e^x}{x} + e. \qquad \blacksquare \end{align*}

    Proof. For the final identity, we use the substitution s = \frac{1}{t}, ds = -\frac{1}{t^2} \, dt. This gives us

        \[ \int_1^x e^{\frac{1}{t}} \, dt &= -\int_1^{\frac{1}{x}} \frac{e^s}{s^2} \, ds. \]

    Now, we use integration by parts with

        \begin{align*}  u &= e^s & \implies && du &= e^s \, ds \\  dv &= \frac{1}{s^2} \, ds & \implies && v &= -\frac{1}{s}. \end{align*}

    This gives us

        \begin{align*}  \int_1^x e^{\frac{1}{t}} \, dt &= - \int_1^{\frac{1}{x}} \frac{e^s}{s^2} \, ds \\[9pt]  &= \frac{e^s}{s} \Bigr \rvert_1^{\frac{1}{x}} - \int_1^{\frac{1}{x}} \frac{e^s}{s} \, ds \\[9pt]  &= xe^{\frac{1}{x}} - e - F \left( \frac{1}{x} \right). \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):