Home » Blog » Evaluate the integral of x / (x3 – 3x + 2)

Evaluate the integral of x / (x3 – 3x + 2)

Compute the following integral.

    \[ \int \frac{x \, dx}{x^3 - 3x + 2}. \]


First, we factor the denominator,

    \[ x^3 - 3x + 2 = (x-1)^2 (x+2). \]

Then we use partial fractions to decompose the integrand,

    \begin{align*}  \frac{x}{x^3-3x+2} &= \frac{x}{(x-1)^2(x+2)} \\  &= \frac{A}{x+2} + \frac{B}{x-1} + \frac{C}{(x-1)^2}. \end{align*}

This gives us the equation

    \[ A(x-1)^2 + B(x-1)(x+2) + C(x+2) = x \]

Substituting the values x = 1 and x = -2

    \begin{align*}  3C &= 1 &\implies \qquad C &= \frac{1}{3} \\  9A &= -2 & \implies \qquad A &= -\frac{2}{9}. \end{align*}

Then we use these values of A and C and plug in x = 0 to find B,

    \begin{align*}  A + -2B + 2C = 0 && \implies && 2B &= A + 2C \\  && \implies && 2B &= -\frac{2}{9} + \frac{2}{3} \\  && \implies && B &= \frac{2}{9}. \end{align*}

So, now we can evaluate the integral with this partial fraction decomposition,

    \begin{align*}  \int \frac{x \, dx}{x^3 - 3x + 2} &= \int \frac{x \, dx}{(x-1)^2(x+2)} \\  &= -\frac{2}{9} \int \frac{dx}{x+2} + \frac{2}{9} \int \frac{dx}{x-1} + \frac{1}{3} \int \frac{dx}{(x-1)^2} \\  &= -\frac{2}{9} \log |x+2| + \frac{2}{9} \log |x-1| + \frac{1}{3} \frac{-1}{x-1} + C \\  &= \frac{2}{9} \log \left| \frac{x-1}{x+2} \right| - \frac{1}{3(x-1)} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):