Home » Blog » Evaluate the integral of ((a+x)/(a-x))1/2

Evaluate the integral of ((a+x)/(a-x))1/2

Evaluate the following integral for a > 0.

    \[ \int \sqrt{\frac{a+x}{a-x}} \, dx. \]


First, we multiply the numerator and denominator in the fraction inside the square root by a+x and do some simplification,

    \begin{align*}   \int \sqrt{\frac{a+x}{a-x}} \, dx &= \int \sqrt{\frac{(a+x)^2}{(a-x)(a+x)}} \, dx \\[9pt]  &= \int \frac{a+x}{\sqrt{a^2-x^2}} \, dx \\[9pt]  &= \int \frac{a}{\sqrt{a^2-x^2}} \,dx + \int \frac{x}{\sqrt{a^2-x^2}} \, dx \\[9pt]  &= \int \frac{1}{\sqrt{1 - \left( \frac{x}{a} \right)^2}} \, dx + \int \frac{x}{\sqrt{a^2-x^2}} \, dx. \end{align*}

Now, we evaluate these two integrals separately. For the first integral we make the substitution u = \frac{x}{a} which implies du = \frac{1}{a} \, dx. Therefore,

    \begin{align*}   \int \frac{1}{\sqrt{1 - \left( \frac{x}{a} \right)^2}} \, dx &= a \int \frac{1}{\sqrt{1-u^2}} \, du \\  &= a \arcsin u + C \\  &= a \arcsin \left( \frac{x}{a} \right) + C. \end{align*}

For the second integral, we make the substitution u = a^2 - x^2 which implies du = -2x \, dx. Therefore,

    \begin{align*}  \int \frac{x}{\sqrt{a^2 - x^2}} \, dx &= -\frac{1}{2} \int \frac{1}{\sqrt{u}} \, du \\[9pt]  &= - \sqrt{u} + C \\  &= -\sqrt{a^2 - x^2} + C. \end{align*}

Putting these together we then have,

    \begin{align*}  \int \sqrt{\frac{a+x}{a-x}} \, dx &= \int \frac{1}{\sqrt{1- \left( \frac{x}{a} \right)^2}} \, dx + \int \frac{x}{\sqrt{a^2 - x^2}} \, dx \\  &= a \arcsin \left( \frac{x}{a} \right) - \sqrt{a^2-x^2} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):