Home » Blog » Evaluate the integral of x2 arccos x

Evaluate the integral of x2 arccos x

Evaluate the following integral:

    \[ \int x^2 \arccos x \, dx. \]


First, we integrate by parts, with

    \begin{align*}  u &= x \arccos x & du &= \arccos x + \frac{-x}{\sqrt{1-x^2}} \, dx \\ dv &= x \, dx & v &= \frac{x^2}{2}. \end{align*}

Therefore, we have

    \begin{align*}  &&\int x^2 \arccos x \, dx &= \frac{x^3}{2} \arccos x - \frac{1}{2} \int x^2 \arccos x \, dx + \frac{1}{2} \int \frac{x^3}{\sqrt{1-x^2}} \, dx \\ \implies && \frac{3}{2} \int x^2 \arccos x \, dx &= \frac{x^3}{2} \arccos x + \frac{1}{2} \int \frac{x^3}{\sqrt{1-x^2}} \, dx \\ \implies && \int x^2 \arccos x \, dx &= \frac{x^3}{3} \arccos x + \frac{1}{3} \int \frac{x^3}{\sqrt{1-x^2}} \, dx. \end{align*}

Now, to evaluate the integral \int \frac{x^3}{\sqrt{1-x^2}} \, dx we make a substitution. Let s = 1-x^2 which implies ds = -2x \, dx. Therefore,

    \begin{align*}  \int \frac{x^3}{\sqrt{1-x^2}} \, dx &= -\frac{1}{2} \int \frac{1-s}{\sqrt{s}} \, ds \\  &= -\frac{1}{2} \int \frac{1}{\sqrt{s}} \, ds + \frac{1}{2} \int \sqrt{s} \, ds \\  &= -\sqrt{s} + \frac{1}{3} s^{\frac{3}{2}} + C \\  &= -\sqrt{1-x^2} + \frac{1}{3} (1-x^2)^{\frac{3}{2}} + C. \end{align*}

Plugging this back in we then have

    \begin{align*}  \int x^2 \arccos x \, dx &= \frac{x^3}{3} \arccos x + \frac{1}{3} \int \frac{x^3}{\sqrt{1-x^2}} \, dx \\  &= \frac{x^3}{3} \arccos x + \frac{1}{3} \left( -\sqrt{1-x^2} + \frac{1}{3} (1-x^2)^{\frac{3}{2}} \right) + C \\  &= \frac{x^3}{3} \arccos x - \frac{1}{3} \sqrt{1-x^2} + \frac{1}{9} (1-x^2)^{\frac{3}{2}} + C \\  &= \frac{x^3}{3} \arccos x - \frac{1}{9}\sqrt{1-x^2}\left( 3 - (1-x^2) \right) + C \\  &= \frac{x^3}{3} \arccos x - \frac{2+x^2}{9} \sqrt{1-x^2} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):