Home » Blog » Evaluate the integral of arctan x1/2

Evaluate the integral of arctan x1/2

Evaluate the following integral

    \[ \int \arctan \sqrt{x} \, dx. \]


We use integration by parts, letting

    \begin{align*}  u &= \arctan \sqrt{x} & du &= \frac{1}{2} \left( \frac{1}{\sqrt{x} (1+x)} \right) \, dx \\ dv &= dx & v &= x. \end{align*}

Therefore,

    \[ \int \arctan \sqrt{x} \, dx &= x \arctan \sqrt{x} - \frac{1}{2} \int \frac{\sqrt{x}}{1+x} \, dx. \]

Now, to evaluate the integral \int \frac{\sqrt{x}}{1+x} \, dx we make the substitution, s = \sqrt{x} which implies ds = \frac{1}{2\sqrt{x}} \, dx. Therefore,

    \begin{align*}  \int \frac{\sqrt{x}}{1+x} \, dx &= 2 \int \frac{s^2}{1+s^2} \, ds \\  &= 2 \int \left(1 - \frac{1}{1+s^2}\right) \, ds \\  &= 2 (s - \arctan s) + C \\  &= 2(\sqrt{x} - \arctan \sqrt{x} ) + C. \end{align*}

Plugging this back in to the equation above we obtain,

    \begin{align*}  \int \arctan \sqrt{x} \, dx &= x \arctan \sqrt{x} - \frac{1}{2} \int \frac{\sqrt{x}}{1+x} \, dx \\[9pt]  &= x \arctan \sqrt{x} - \frac{1}{2} \left( 2 (\sqrt{x} - \arctan \sqrt{x}) \right) + C \\[9pt]  &= x \arctan \sqrt{x} - \sqrt{x} + \arctan \sqrt{x} + C \\[9pt]  &= (x+1) \arctan \sqrt{x} - \sqrt{x} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):