Home » Blog » Evaluate the integral of (1 – x2)1/2

Evaluate the integral of (1 – x2)1/2

Evaluate the following integral

    \[ \int \sqrt{1-x^2} \, dx. \]


We integrate by parts, letting

    \begin{align*}  u &= \sqrt{1-x^2} & du &= \frac{-x}{\sqrt{1-x^2}} \, dx \\  dv &= dx & v &= x. \end{align*}

Then we have

    \begin{align*}  &&\int \sqrt{1-x^2} \, dx &= x \sqrt{1-x^2} + \int \frac{x^2}{\sqrt{1-x^2}} \, dx \\[9pt]  \implies && \int \sqrt{1-x^2} \, dx &= x \sqrt{1-x^2} + \int \frac{1}{\sqrt{1-x^2}} \, dx - \int \frac{1-x^2}{\sqrt{1-x^2}} \, dx \\[9pt]  \implies && 2 \int \sqrt{1-x^2} \, dx &= x \sqrt{1-x^2} + \arcsin x + C \\[9pt]  \implies && \int \sqrt{1-x^2} \, dx & = \frac{1}{2} \left( \arcsin x + x \sqrt{1-x^2} \right) + C. \end{align*}

(As is often the case, there are other ways to do this. One might want to try a substitution, letting t = \arcsin x.)

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):