Home » Blog » Evaluate the integral of 1 / (1-2x-x2)1/2

Evaluate the integral of 1 / (1-2x-x2)1/2

Evaluate the following integral:

    \[ \int \frac{dx}{\sqrt{1-2x-x^2}}. \]


First, we simplify the integrand

    \[ \int \frac{dx}{\sqrt{1-2x-x^2}} = \int \frac{dx}{\sqrt{2-(x+1)^2}} = \int \frac{1}{\sqrt{1 - \left( \frac{x+1}{\sqrt{2}} \right)^2}}\frac{dx}{\sqrt{2}}. \]

Now we make a substitution, letting u = \frac{x+1}{\sqrt{2}} which implies du = \frac{1}{\sqrt{2}} \, dx. Therefore,

    \begin{align*}  \int \frac{dx}{\sqrt{1-2x-x^2}} &= \int \frac{du}{\sqrt{1-u^2}} \\  &= \arcsin u + C \\  &= \arcsin \frac{x+1}{\sqrt{2}} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):