Home » Blog » Prove that x – (1/3)x3 < arctan x if x is positive

Prove that x – (1/3)x3 < arctan x if x is positive

Consider the function

    \[ f(x) = \arctan x - x + \frac{x^3}{3}. \]

Compute the derivative f'(x) and use the sign of the derivative to prove the inequality

    \[ x - \frac{x^3}{3} < \arctan x \qquad \text{for all } x > 0. \]


Proof. First, we compute the derivative

    \begin{align*}  f'(x) &= \frac{1}{1+x^2} - 1 + x^2 \\   &= \frac{x^4}{1+x^2}. \end{align*}

Therefore, f'(x) > 0 for all x \neq 0. This implies f(x) is strictly increasing if x \neq 0, and in particular, f(x) is increasing for x > 0. This implies

    \begin{align*}  f(x) > f(0) && \implies && \arctan x - x + \frac{x^3}{3} &> 0 \\  && \implies && x - \frac{x^3}{3} &< \arctan x. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):