Home » Blog » Find the derivative of arctan (x+(1+x2)1/2)

Find the derivative of arctan (x+(1+x2)1/2)

Find the derivative of the function

    \[ f(x) = \arctan \left( x + \sqrt{1+x^2} \right). \]


Using the formula for the derivative of arctangent and the chain rule we compute this,

    \begin{align*}  f'(x) &= \left( 1+ \frac{x}{\sqrt{1+x^2}} \right) \left( \frac{1}{1 + (x+\sqrt{1+x^2})^2} \right) \\  &= \left( \frac{x + \sqrt{1+x^2}}{\sqrt{1+x^2}} \right) \left( \frac{1}{2 + 2x^2 + 2x \sqrt{1+x^2} } \right) \\  &= \frac{1}{2} \left( \frac{x + \sqrt{1+x^2}}{\sqrt{1+x^2}} \right) \left( \frac{1}{(\sqrt{1+x^2})(x + \sqrt{1+x^2})} \right) \\  &= \frac{1}{2(1+x^2)}. \end{align*}

This is valid for all x.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):