Home » Blog » Evaluate the integral of 1/(a2-x2)1/2

Evaluate the integral of 1/(a2-x2)1/2

Evaluate the following integral for a \neq 0,

    \[ \int \frac{dx}{\sqrt{a^2 - x^2}}. \]


To evaluate the integral, first we pull out a \frac{1}{|a|},

    \[ \int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{dx}{|a| \sqrt{1 - \left( \frac{x}{a}\right)^2}}. \]

Then, we make the substitution u = \frac{x}{|a|} and du = \frac{dx}{|a|}. This gives us

    \begin{align*}  \int \frac{dx}{\sqrt{a^2-x^2}} &= \int \frac{du}{\sqrt{1-u^2}} \\  &= \arcsin u + C \\  &= \arcsin \frac{x}{|a|} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):