Home » Blog » Prove that the derivative of sech x is -sech x tanh x

Prove that the derivative of sech x is -sech x tanh x

Prove the following formula for the derivative of the hyperbolic secant,

    \[ D(\operatorname{sech} x) = -\operatorname{sech} x \tanh x. \]


Proof. We can compute this directly,

    \begin{align*}  D(\operatorname{sech} x) &= D \left( \frac{1}{\cosh x} \right) \\  &= \frac{-\sinh x}{\cosh^2 x} \\  &= -\operatorname{sech} x \tanh x. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):