Home » Blog » Prove that the derivative of csch x is -csch x coth x

Prove that the derivative of csch x is -csch x coth x

Prove the following formula for the derivative of the hyperbolic cosecant,

    \[ D(\operatorname{csch} x) = - \operatorname{csch x} \operatorname{coth} x. \]


Proof. We can compute the derivative directly,

    \begin{align*}  D(\operatorname{csch} x) &= D \left( \frac{1}{\sinh x} \right) \\  &= \frac{-\cosh x}{\sinh^2 x} \\  &= -\operatorname{csch} x \operatorname{coth} x. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):