Home » Blog » Prove that 2 cosh2 (x/2) = cosh x + 1

Prove that 2 cosh2 (x/2) = cosh x + 1

Prove the following identity,

    \[ 2 \cosh^2 \frac{1}{2}x = \cosh x + 1. \]


Proof. Computing directly from the definition of the hyperbolic cosine,

    \begin{align*}  2 \cosh^2 \frac{x}{2} &= 2 \left( \frac{e^{\frac{x}{2}} + e^{-\frac{x}{2}}}{2} \right)^2 \\  &= 2 \left( \frac{e^x + 2 + e^{-x}}{4} \right) \\  &= \frac{e^x + e^{-x}}{2} + 1 \\  &= \cosh x + 1. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):