Home » Blog » Prove that coth2 x – csch2 x = 1

Prove that coth2 x – csch2 x = 1

Prove the following identity,

    \[ \operatorname{coth}^2 x - \operatorname{csch}^2 x = 1. \]


Proof. From the definitions of hyperbolic cotangent and hyperbolic cosecant we have,

    \begin{align*}  \operatorname{coth}^2 x - \operatorname{csch}^2 x &= \frac{\cosh^2 x}{\sinh^2 x} - \frac{1}{\sinh^2 x} \\  &= \frac{\cosh^2 x - 1}{\sinh^2 x} \\  &= \frac{\sinh^2 x}{\sinh^2 x} \\  &= 1. \qquad \blacksquare \end{align*}

One comment

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):