Home » Blog » Calculate cosh (x+y) given sinh x = 4/3 and sinh y = 3/4

Calculate cosh (x+y) given sinh x = 4/3 and sinh y = 3/4

Find the value of \cosh (x+y) given that \sinh x = \frac{4}{3} and \sinh y = \frac{3}{4}.


We use the identity \cosh^2 = 1 + \sinh^2 in both cases.

    \begin{align*}  \cosh^2 x &= 1 + \sinh^2 x &\implies && \cosh^2 x &= 1 + \frac{16}{9} & \implies && \cosh x &= \frac{5}{3} \\  \cosh^2 y &= 1 + \sinh^2 y &\implies && \cosh^2 y &= 1 + \frac{9}{16} & \implies && \cosh y &= \frac{5}{4}. \end{align*}

Then we recall (Section 6.19, Exercise #6) the formula for \cosh (x+y),

    \[ \cosh (x+y) = \cosh x \cosh y + \sinh x \sinh y. \]

Therefore, we can compute

    \begin{align*}  \cosh (x+y) &= \cosh x \cosh y + \sinh x \sinh y \\  &= \frac{5}{3} \cdot \frac{5}{4} + \frac{4}{3}\cdot \frac{3}{4} \\  &= \frac{25}{12} + 1 \\  &= \frac{37}{12}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):