Home » Blog » Prove that (cosh x + sinh x)n = cosh (nx) + sinh (nx)

Prove that (cosh x + sinh x)n = cosh (nx) + sinh (nx)

Prove the following identity:

    \[ (\cosh x + \sinh x)^n = \cosh (nx) + \sinh (nx). \]


Proof. We know from a previous exercise (Section 6.19, Exercise #9) that

    \[ \cosh x + \sinh x = e^x \quad \implies \quad \cosh (nx) + \sinh(nx) = e^{nx}. \]

Therefore, we have

    \[ (\cosh x + \sinh x)^n = (e^x)^n = e^{nx} = \cosh (nx) + \sinh(nx). \qquad \blacksquare \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):