Home » Blog » Prove that cosh (2x) = cosh2x + sinh2 x

Prove that cosh (2x) = cosh2x + sinh2 x

Prove that

    \[ \cosh (2x) = \cosh^2 x + \sinh^2 x. \]


Proof. We know from this previous exercise (Section 6.19, Exercise #6) that

    \[ \cosh (x +y) = \cosh x \cosh y + \sinh x \sinh y. \]

Therefore,

    \begin{align*}  \cosh(2x) &= \cosh (x+x) \\  &= \cosh x \cosh x + \sinh x \sinh x \\  &= \cosh^2 x + \sinh^2 x. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):