Home » Blog » Prove basic properties of the exponential function

Prove basic properties of the exponential function

A real number a raised to a real exponent x is defined by

    \[ a^x = e^{x \log a}. \]

Prove the following properties:

  1. \log a^x = x \log a.
  2. (ab)^x = a^x b^x.
  3. a^x a^y = a^{x+y}.
  4. (a^x)^y = (a^y)^x = a^{xy}.
  5. For a \neq 1, y = a^x if and only if x = \log_a y.

    For all of these we use the definition a^x = e^{x \log a} and then use the corresponding properties of the exponential function e^x. (These are proved for the function E(x) in Theorem 6.6, and then we define e^x = E(x) in Section 6.14.)

  1. Proof.

        \[ \log a^x = \log (e^{x \log a}) = x \log a \log e = x \log a. \qquad \blacksquare \]

  2. Proof.

        \[ (ab)^x = e^{x \log (ab)} = e^{x \log a + x \log b} = e^{x \log a}e^{x \log b} = a^x b^x. \qquad \blacksquare \]

  3. Proof.

        \[ a^x a^y = (e ^{x \log a})(e^{y \log a}) = e^{x \log a + y \log a} = e^{(x+y)\log a} = a^{x+y}. \qquad \blacksquare \]

  4. Proof.

        \begin{align*}  (a^x)^y &= e^{y \log a^x} = e^{xy \log a} = a^{xy} \\  (a^y)^x &= e^{x \log a^y} = e^{xy \log a} = a^{xy}. \qquad \blacksquare \end{align*}

  5. Proof. Assume a \neq 1. For the forward direction, assume y = a^x. We have

        \[ y = a^x = e^{x \log a} \quad \implies \quad \log y = \log \left(e^{ x \log a} \right) = x \log a. \]

    Therefore, since a \neq 1 we have \log a \neq 0, and so

        \[ x = \frac{\log y}{\log a} \quad \implies \quad x = \log_a y. \]

    Conversely, if x = \log_a y then we have

        \[ x \log a = log y \quad \implies \quad e^{x \log a} = e^{\log y} \quad \implies \quad a^x = y. \qquad \blacksquare \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):