Home » Blog » Find the derivative of xlog x

Find the derivative of xlog x

Find the derivative of the function

    \[ f(x) = x^{\log x}. \]


To find this derivative we want to use logarithmic differentiation. Take the logarithm of both sides,

    \[ log f(x) = \log (x^{\log x}) = (\log x)\cdot (\log x) = (\log x)^2. \]

Then differentiating both sides of the equation (and using the chain rule for the derivative on the right hand side),

    \begin{align*}  && \big(\log (f(x))\big)' &= \big( (\log x)^2 \big)' \\[9pt]  \implies && \frac{f'(x)}{f(x)} &= 2 (\log x) (\log x)' \\[9pt]  \implies && \frac{f'(x)}{f(x)} &= 2 (\log x) \left( \frac{1}{x} \right) \\[9pt]  \implies && \frac{f'(x)}{f(x)} &= 2x^{-1} \log x \\[9pt]  \implies && f'(x) &= \big( 2x^{-1} \log x \big) \cdot f(x). \end{align*}

Substituting back in our original function f(x) = x^{\log x} we obtain

    \begin{align*}  f'(x) &= \big( 2x^{-1} \log x \big) \cdot (x^{\log x}) \\[9pt]  &= 2 x^{-1 + \log x} \log x. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):