Home » Blog » Find the derivative of log (ex + (1+e2x)1/2)

Find the derivative of log (ex + (1+e2x)1/2)

Find the derivative of the following function:

    \[ f(x) = \log \left( e^x + \sqrt{1+e^{2x}} \right). \]


We compute using the chain rule and the formulas for derivatives of logarithms and exponentials,

    \begin{align*}  f'(x) &= \left( \frac{1}{e^x + \sqrt{1+e^{2x}}} \right) \left( e^x + \frac{e^{2x}}{\sqrt{1+e^{2x}}} \right) \\[9pt]  &= \frac{ e^x \sqrt{1+e^{2x}} + e^{2x}}{\left( e^x + \sqrt{1+e^{2x}} \right) \left( \sqrt{1+e^{2x}} \right)} \\[9pt]  &= \frac{e^x (e^x + \sqrt{1+e^{2x}} )}{\left( e^x + \sqrt{1+e^{2x}} \right) \left( \sqrt{1+e^{2x}} \right)} \\[9pt]  &= \frac{e^x}{\sqrt{1+e^{2x}}} \\[9pt]  &= e^x \left( 1+ e^{2x} \right)^{-\frac{1}{2}}.  \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):