Home » Blog » Find the derivative of (ex – e-x)/(ex + e-x)

Find the derivative of (ex – e-x)/(ex + e-x)

Find the derivative of the following function:

    \[ f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}. \]


We can compute this derivative directly using the quotient rule,

    \begin{align*}  f'(x) &= \frac{(e^x + e^{-x})(e^x + e^{-x}) - (e^x - e^{-x})(e^x - e^{-x})}{(e^x+e^{-x})^2} \\[9pt]  &= \frac{(e^{2x} + e^{-2x} + 2) - (e^{2x} + e^{-2x} - 2)}{(e^x+e^{-x})^2} \\[9pt]  &= \frac{4}{(e^x+e^{-x})^2} \\[9pt]  &= 4 (e^x + e^{-x})^{-2}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):