Home » Blog » Evaluate the indefinite integral of x3e-x2

Evaluate the indefinite integral of x3e-x2

Compute the following indefinite integral,

    \[ \int x^3 e^{-x^2} \, dx. \]


First, we rearrange the integrand a bit to get a form in which we can make a u-substitution,

    \[ \int x^3 e^{-x^2} \, dx = -\frac{1}{2} \int x^2(-2xe^{-x^2} ) \, dx. \]

Then, let

    \[ u = e^{-x^2}, \quad du = -2x e^{-x^2} \, dx \quad \implies \quad \log u = -x^2. \]

Therefore, making a u-substitution, we have

    \begin{align*}  \int x^3 e^{-x^2} \, dx &= -\frac{1}{2} \int x^2 (-2xe^{-x^2} ) \, dx \\[10pt]  &= -\frac{1}{2} \int -\log u \, du \\[10pt]  &= \frac{1}{2} \int \log u \, du \\[10pt]  &= \frac{1}{2} (u \log u - u) + C \\[10pt]  &= \frac{1}{2} \left( e^{-x^2} \log \left( e^{-x^2} \right) - e^{-x^2} \right) + C \\[10pt]  &= -\frac{1}{2} (x^2+1)e^{-x^2} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):