Home » Blog » Evaluate the indefinite integral of ex1/2

Evaluate the indefinite integral of ex1/2

Compute the following indefinite integral

    \[ \int e^{\sqrt{x}} \, dx. \]


To evaluate this integral we want to make a substitution. First multiply the numerator and denominator by 2 \sqrt{x} to obtain,

    \[ \int e^{\sqrt{x}} \, dx = \int \frac{2\sqrt{x} e^{\sqrt{x}}}{2 \sqrt{x}} \, dx. \]

Now define the function u by

    \[ u = e^{\sqrt{x}}, \qquad du &= \frac{e^{\sqrt{x}}}{2\sqrt{x}}. \]

This implies

    \[ \log u = \sqrt{x}. \]

Therefore, using the method of substitution, we have

    \begin{align*}  \int e^{\sqrt{x}} \, dx &= \int 2 \log u \, du \\  &= 2 (u \log u - u) + C \\  &= 2 \left( e^{\sqrt{x}} \log (e^{\sqrt{x}}) - e^{\sqrt{x}} \right) + C\\  &= 2 (\sqrt{x} - 1)e^{\sqrt{x}} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):