Home » Blog » Find the integral of (log |x|) / (x (1+log |x|)1/2)

Find the integral of (log |x|) / (x (1+log |x|)1/2)

Evaluate the following integral:

    \[ \int \frac{\log |x|}{x \sqrt{1+\log |x|}} \, dx. \]


To evaluate the integral, first we make the substitution,

    \[ u = 1 + \log |x|, \qquad du = \frac{1}{x} \, dx. \]

Therefore we have,

    \begin{align*}  \int \frac{\log |x|}{x \sqrt{1+\log |x|}} \, dx &= \int \frac{u-1}{\sqrt{u}} \, du \\  &= \int \sqrt{u} \, du - \int \frac{1}{\sqrt{u}} \, du \\  &= \frac{2}{3} u^{\frac{3}{2}} - 2\sqrt{u} + C \\  &= \frac{2}{3} \left( 1 + \log |x| \right)^{\frac{3}{2}} - 2 \left( 1 + \log |x| \right)^{\frac{1}{2}} + C\\  &= \frac{2}{3} \left( 1 + \log |x| \right)^{\frac{1}{2}} \left( 1 + \log |x| - 3 \right) + C\\  &= \frac{2}{3} \left( 1+ \log |x| \right)^{\frac{1}{2}} (-2 + \log |x|) + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):