Home » Blog » Compute the derivative of x log(x+ (1+x2)1/2) – (1+x2)1/2

Compute the derivative of x log(x+ (1+x2)1/2) – (1+x2)1/2

Compute the derivative of

    \[ f(x) = x \log \left( x + \sqrt{1+x^2} \right) - \sqrt{1+x^2}. \]


Using the chain rule and the formula for the derivative of the logarithm we can compute directly,

    \begin{align*}  f'(x) &= \log \left( x + \sqrt{1+x^2} \right) + \left( \frac{x}{x+\sqrt{1+x^2}} \right) \left( 1 + \frac{x}{\sqrt{1+x^2}} \right) - \frac{x}{\sqrt{1+x^2}} \\  &= \log \left( x + \sqrt{1+x^2} \right) + \left( \frac{x}{x+\sqrt{1+x^2}} \right) \left( \frac{\sqrt{1+x^2} + x}{\sqrt{1+x^2}} \right) - \frac{x}{\sqrt{1+x^2}} \\  &= \log \left( x + \sqrt{1+x^2} \right) + \frac{x}{\sqrt{1+x^2}} - \frac{x}{\sqrt{1+x^2}} \\  &= \log \left( x + \sqrt{1+x^2} \right). \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):