Home » Blog » Verify the given integral formula

Verify the given integral formula

Verify the formula using any method.

    \[ \int \frac{\sqrt{a+bx}}{x} \, dx = 2 \sqrt{a+bx} + a \int \frac{dx}{x \sqrt{a + bx}}  + C. \]


Proof. We multiply the numerator and denominator of the integrand by \sqrt{a+bx} and then evaluate,

    \begin{align*}  \int \frac{\sqrt{a+bx}}{x} \, dx &= \int \frac{a+bx}{x \sqrt{a+bx}} \, dx \\[9pt]  &= \int \frac{bx}{x \sqrt{a+bx}} \, dx + \int \frac{a}{x\sqrt{a+bx}} \, dx  \\[9pt]  &= \int \frac{b}{\sqrt{a+bx}} \, dx + a \int \frac{dx}{x\sqrt{a+bx}}.  \end{align*}

For the integral on the left, we let u = a + bx, du = b and we have

    \[ \int \frac{b}{\sqrt{a+bx}} \, dx = \int u^{-\frac{1}{2}} \, du = 2 \sqrt{u} + C = 2 \sqrt{a+bx} + C. \]

Therefore,

    \[ \int \frac{\sqrt{a+bx}}{x} \, dx = 2 \sqrt{a+bx} + a \int \frac{dx}{x\sqrt{a+bx}} + C. \qquad \blacksquare \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):