Home » Blog » Find the integral of (2+3x) sin (5x)

Find the integral of (2+3x) sin (5x)

Evaluate the following integral:

    \[ \int(2+3x) \sin (5x) \, dx. \]


First, we multiply out to get

    \[ \int (2+3x) \sin (5x) \, dx = 2 \int \sin (5x) \, dx + 3 \int x \sin (5x) \, dx. \]

For the integral on the left we make the substitution u = 5x, du = 5 \, dx. Therefore,

    \begin{align*}   2 \int \sin (5x) \, dx &= \frac{2}{5} \int \sin u \, du \\  &= -\frac{2}{5} \cos u + C \\  &= -\frac{2}{5} \cos (5x) + C. \end{align*}

For the integral on the right we integrate by parts letting

    \begin{align*}  u &= x & du &= dx \\  dv &= \sin (5x)\, dx & v &= -\frac{1}{5} \cos (5x). \end{align*}

Therefore,

    \begin{align*}  3 \int x \sin (5x) \, dx &= 3 \int u \, dv \\  &= 3 \left( uv - \int v \, du \right) \\  &= 3 \left( -\frac{x}{5} \cos (5x) + \frac{1}{5} \int \cos (5x) \, dx \right) \\  &= 3 \left( -\frac{x}{5} \cos (5x) + \frac{1}{25} \sin (5x) \right) + C\\  &= \frac{3}{25} \sin (5x) - \frac{3x}{5} \cos (5x) + C. \end{align*}

Putting these together we have

    \[ \int (2+3x) \sin (5x) \, dx = -\frac{2}{5} \cos (5x) + \frac{3}{25} \sin (5x) - \frac{3}{5} x \cos (5x) + C. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):