Home » Blog » Find the integral of (1+3 cos2x)1/2 sin (2x)

Find the integral of (1+3 cos2x)1/2 sin (2x)

Evaluate the following integral:

    \[ \int \sqrt{1+3 \cos^2 x} \sin (2x) \, dx. \]


Here we make the substitution (recalling the trig identity \sin (2x) = 2 \sin x \cos x),

    \[ u = 1+3 \cos^2 x \quad \implies \quad du = -6 \cos x \sin x \, dx= -3 \sin (2x) \, dx. \]

Thus, we have

    \begin{align*}  \int \sqrt{1+3 \cos^2 x} \sin (2x) \, dx &= -\frac{1}{3} \int u^{\frac{1}{2}} \, du \\  &= -\frac{2}{9} u^{\frac{3}{2}} + C \\  &= -\frac{2}{9} (1+3\cos^2 x)^{\frac{3}{2}} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):