Home » Blog » Find the integral from -2 to 1 of x(x2 – 1)9

Find the integral from -2 to 1 of x(x2 – 1)9

Evaluate the following integral:

    \[ \int_{-2}^1x(x^2-1)^9 \, dx. \]


We make the substitution

    \[ u = x^2 - 1 \qquad \implies \qquad du = 2x. \]

The bounds of integration are then

    \[ u(-2) = 3 \qquad \text{and} \qquad u(1) = 0. \]

So we have

    \begin{align*}  \int_{-2}^1 x (x^2 - 1)^9 \, dx &= \frac{1}{2} \int_3^0 u^9 \, du \\  &= \frac{1}{2} \left( \frac{u^{10}}{10} \Big \rvert_3^0 \right) \\  &= - \frac{3^{10}}{20}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):