Home » Blog » Find the integral from 1 to 2 of x-2 sin (1/x)

Find the integral from 1 to 2 of x-2 sin (1/x)

Evaluate the following integral:

    \[ \int_1^2 x^{-2} \sin \left( \frac{1}{x} \right) \, dx. \]


We make the substitution,

    \[ u = \frac{1}{x} \qquad \implies \qquad du = -\frac{1}{x^2} \, dx. \]

Giving us new bounds of integration,

    \[ u(1) = 1 \qquad \text{and} \qquad u(2) = \frac{1}{2}. \]

Then we can evaluate

    \begin{align*}  \int_1^2 \frac{1}{x^2} \sin \left( \frac{1}{x} \right) \,dx &= -\int_1^{\frac{1}{2}} \sin u \, du \\  &= \int_{\frac{1}{2}}^1 \sin u \, du \\  &= -\cos u \Big \rvert_{\frac{1}{2}}^1 \\  &= \cos \frac{1}{2} - \cos 1. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):