Home » Blog » Find the integral from 0 to 1 of (2x+3)/(6x+7)3

Find the integral from 0 to 1 of (2x+3)/(6x+7)3

Evaluate the following integral:

    \[ \int_0^1 \frac{2x+3}{(6x+7)^3} \, dx. \]


First we need to get this into a form we can do something with (if you have a more elegant solution, please let us know):

    \begin{align*}  \int_0^1 \frac{2x+3}{(6x+7)^3} \, dx &= \frac{1}{3} \int_0^1 \frac{6x + 9}{(6x+7)^3} \, dx \\  &= \frac{1}{3} \int_0^1 \frac{6x+7}{(6x+7)^3} \, dx + \frac{1}{3} \int_0^1 \frac{2}{(6x+7)^3} \, dx \\  &= \frac{1}{3} \int_0^1 \frac{1}{(6x+7)^2} \, dx + \frac{1}{9} \int_0^1 \frac{6}{(6x+7)^3} \, dx \\  &= \frac{1}{18} \int_0^1 \frac{6}{(6x+7)^2} \, dx + \frac{1}{9} \int_0^1 \frac{6}{(6x+7)^3} \, dx. \end{align*}

Now, in both integrals we make the substitution,

    \[ u = 6x+7 \qquad \implies \qquad du = 6 \, dx. \]

Which gives us new bounds of integration,

    \[ u(0) = 7 \qquad \text{and} \qquad u(1) = 13. \]

Therefore,

    \begin{align*}  \int_0^1 \frac{2x+3}{(6x+7)^3} \, dx &= \frac{1}{18} \int_7^{13} \frac{1}{u^2} \, du + \frac{1}{9} \int_7^{13} \frac{1}{u^3} \, du \\  &= \frac{1}{18} \left( -\frac{1}{u} \Big \rvert_7^{13} \right) + \frac{1}{18} \left( -\frac{1}{u^2} \Big \rvert_7^{13} \right) \\  &= \frac{1}{18} \left( - \frac{u+1}{u^2} \Big \rvert_7^{13} \right) \\  &= \frac{1}{18} \left( \frac{8}{49} - \frac{14}{169} \right) \\  &= \frac{1}{18} \left( \frac{666}{8281} \right) \\  &= \frac{37}{8281}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):