Home » Blog » Find an integer to make a given integral formula true

Find an integer to make a given integral formula true

  1. Find a value for n \in \mathbb{Z} such that

        \[ n \int_0^1 x f''(2x) \, dx = \int_0^2 t f''(t) \, dt. \]

  2. Given that

        \[ f(0) = 1, \qquad f(2) = 3, \qquad f'(2) = 5 \]

    compute the integral

        \[ \int_0^1 xf''(2x) \, dx. \]


  1. To do this we use the expansion/contraction property of the integral (which we proved here). We have

        \begin{align*} \int_0^2 t f''(t) \, dt &= n \int_0^1 x f''(2x) \, dx \\  &= \frac{n}{2} \int_0^2 \frac{x}{2} f''(x) \, dx \\  &= \frac{n}{4} \int_0^2 x f''(x) \, dx \\  &= \frac{n}{4} \int_0^2 t f''(t) \, dt. \end{align*}

    For this equation to be true we must have n =4.

  2. To compute this we use the formula we established in part (a),

        \[  \int_0^1 x f''(2x) \, dx = \frac{1}{4} \int_0^2 x f''(x) \, dx. \]

    Then, we use integration by parts with

        \begin{align*}  u &= x & \implies && du &= dx \\ dv &= f''(x) \, dx & \implies && v &= f'(x) \end{align*}

    Therefore,

        \begin{align*}  \frac{1}{4} \int_0^2 xf''(x) \, dx &= \frac{1}{4} \left( xf'(x) \Big \rvert_0^2 - \int_0^2 f'(x) \, dx \right) \\  &= \frac{1}{4} \left( 2f'(2) - f(2) + f(0) \right) \\  &= \frac{1}{4} (10 - 3 + 1) \\  &= 2. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):