Home » Blog » Evaluate some definite integrals of even powers of sine

Evaluate some definite integrals of even powers of sine

From the previous two exercises (here and here) we know

    \[ \int \sin^2 x \, dx = \frac{1}{2}x - \frac{1}{4} \sin (2x), \]

and

    \[ \int \sin^n x \, dx = - \frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx. \]

Use these results to evaluate the following:

  1. \displaystyle{ \int_0^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{\pi}{4}}.
  2. \displaystyle{ \int_0^{\frac{\pi}{2}} \sin^4 x \, dx = \frac{3}{4} \int_0^{\frac{\pi}{2}} \sin^2 x \, dx =  \frac{3 \pi}{16}}.
  3. \displaystyle{ \int_0^{\frac{\pi}{2}} \sin^6 x \, dx = \frac{5}{6} \int_0^{\frac{\pi}{2}} \sin^4 x \, dx = \frac{5 \pi}{32}}.

  1. Using the first formula we have

        \begin{align*}   \int_0^{\frac{\pi}{2}} \sin^2 x \, dx &= \left. \left( \frac{1}{2} x - \frac{1}{4} \sin (2x) \right) \right|_0^{\frac{\pi}{2}} \\[9pt]  &= \left( \frac{\pi}{4} - 0 \right) - 0 \\[9pt]  &= \frac{\pi}{4}. \end{align*}

  2. Using the second formula and then part (a) we have

        \begin{align*}  \int_0^{\frac{\pi}{2}} \sin^4 x \, dx &= \left.- \frac{\sin^3 x \cos x}{4}\right|_0^{\frac{\pi}{2}} + \frac{3}{4} \int_0^{\frac{\pi}{2}} \sin^2 x \, dx \\[9pt]  &= 0 + \frac{3}{4} \left( \frac{\pi}{4} \right) \\[9pt]  &= \frac{3 \pi}{16}. \end{align*}

  3. Using the second formula and then part (b) we have

        \begin{align*}  \int_0^{\frac{\pi}{2}} \sin^6 x \, dx &= \left. -\frac{\sin^5 x \cos x}{6} \right|_0^{\frac{\pi}{2}} + \frac{5}{6} \int_0^{\frac{\pi}{2}} \sin^4 x \, dx \\[9pt]  &= 0 + \frac{5}{6} \left( \frac{3 \pi}{16} \right) \\[9pt]  &= \frac{5 \pi}{32}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):