Home » Blog » Evaluate the integral using substitution

Evaluate the integral using substitution

Use the method of substitution to evaluate the following integral:

    \[ \int_0^{\frac{\pi}{4}} \cos (2x) \sqrt{4-\sin (2x)} \, dx. \]


Let

    \[ u = 4 - \sin (2x) \quad \implies \quad du = -2\cos (2x) \, dx. \]

For the limits of integration we have

    \begin{align*}  u \left( \frac{\pi}{4} \right) &= 3 \\  u (0) &= 4 \end{align*}

Then, we can evaluate the integral,

    \begin{align*}  \int_0^{\frac{\pi}{4}} \cos (2x) \sqrt{4 - \sin (2x)} \, dx &= -\frac{1}{2} \int_{u(0)}^{u\left(\frac{\pi}{4}\right)} u^{\frac{1}{2}} \, du \\  &= -\frac{1}{2} \int_4^3 u^{\frac{1}{2}} \, du \\  &= -\frac{1}{3} u^{\frac{3}{2}} \Bigr \rvert_4^3 \\  &= -\frac{1}{3} \left( \sqrt{27} - 8 \right) \\  &= \frac{8}{3} - \frac{\sqrt{27}}{3} \\  &= \frac{8}{3} - \sqrt{3}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):