Home » Blog » Evaluate the integral using substitution

Evaluate the integral using substitution

Use the method of substitution to evaluate the following integral:

    \[ \int z(z-1)^{\frac{1}{3}} \, dz. \]


Let

    \[ u = z - 1 \quad \implies \quad du = dz. \]

Then, we can evaluate the integral,

    \begin{align*}  \int z(z-1)^{\frac{1}{3}} &= \int (u+1)u^{\frac{1}{3}} \, du \\  &= \int u^{\frac{4}{3}} \, du + \int u^{\frac{1}{3}} \, du \\  &= \frac{3}{7} u^{\frac{7}{3}} + \frac{3}{4} u^{\frac{4}{3}} + C\\  &= \frac{3}{7} (z-1)^{\frac{7}{3}} + \frac{3}{4} (z-1)^{\frac{4}{3}} + C.  \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):