Home » Blog » Evaluate the integral using substitution

Evaluate the integral using substitution

Use the method of substitution to evaluate the following integral:

    \[ \int \frac{(x^2 + 1 - 2x)^{\frac{1}{5}}}{1-x} \, dx. \]


Let’s simplify the integral some,

    \begin{align*}  \int \frac{(x^2 + 1 - 2x)^{\frac{1}{5}}}{1-x} \, dx &= \int \frac{(x-1)^{\frac{2}{5}}}{1-x} \, dx \\  &= -\int (x-1)^{-\frac{3}{5}} \, dx \end{align*}

Now, let

    \[ u = x-1 \qquad \implies \quad du = dx. \]

So, we can evaluate,

    \begin{align*}  -\int (x-1)^{-\frac{3}{5}} \, dx &= -\int u^{-\frac{3}{5}} \, du \\  &= -\frac{5}{2} u^{\frac{2}{5}} + C \\  &= -\frac{5}{2} (x-1)^{\frac{2}{5}} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):