Home » Blog » Evaluate the integral using substitution

Evaluate the integral using substitution

Use the method of substitution to evaluate the following integral:

    \[ \int \frac{x^5 \, dx}{\sqrt{1-x^6}}. \]


Let

    \[ u = 1 - x^6 \quad \implies \quad du = -6x^5 \, dx. \]

Then, we can evaluate the integral,

    \begin{align*}  \int \frac{x^5 \, dx}{\sqrt{1-x^6}} &= -\frac{1}{6} \int u^{-\frac{1}{2}} \, du \\  &= -\frac{1}{3} u^{\frac{1}{2}} + C \\  &= -\frac{1}{3} (1 - x^6)^{\frac{1}{2}} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):