Home » Blog » Evaluate the integral using substitution

Evaluate the integral using substitution

Use the method of substitution to evaluate the following integral:

    \[ \int x^{n-1} \sin (x^n) \, dx. \]


Let

    \[ u = x^n \quad \implies \quad du = nx^{n-1} \, dx. \]

Then, we can evaluate the integral,

    \begin{align*}  \int x^{n-1} \sin x^n \, dx &= \frac{1}{n} \int \sin u \, du \\  &= -\frac{1}{n} \cos u + C \\  &= -\frac{1}{n} \cos x^n + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):