Home » Blog » Evaluate the integral using substitution

Evaluate the integral using substitution

Use the method of substitution to evaluate the following integral:

    \[ \int \frac{\sin x \, dx}{\sqrt{\cos^3 x}}. \]


Let

    \[ u = \cos x  \quad \implies \quad du = -\sin x \, dx. \]

Then, we can evaluate the integral,

    \begin{align*}  \int \sin x (\cos x)^{-\frac{3}{2}} \, dx &= - \int u^{-\frac{3}{2}} \, du \\  &= 2 u^{-\frac{1}{2}} + C \\  &= \frac{2}{\sqrt{\cos x}} + C. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):