Home » Blog » Evaluate the integral using substitution

Evaluate the integral using substitution

Use the method of substitution to evaluate the following integral:

    \[ \int \sqrt{2x+1} \, dx. \]


Let

    \[ u = 2x + 1 \qquad \implies \qquad du = 2 \, dx. \]

So, using substitution

    \begin{align*}  \int \sqrt{2x+1} \, dx &= \int \frac{\sqrt{u}}{2} \, du \\  &= \left(\frac{1}{2} \right) \left( \frac{2}{3} \right) u^{\frac{3}{2}} + C \\  &= \frac{1}{3}(2x+1)^{\frac{3}{2}} + C.  \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):