Home » Blog » Find an integral formula involving the absolute value function

Find an integral formula involving the absolute value function

Prove that

    \[ \int_0^x (t + |t|)^2 \, dt = \frac{2x^2}{3} (x + |x|) \]

for all x \in \mathbb{R}.


Proof. We consider two cases:
Case #1: If x \geq 0 then t = |t| for all t \in [0,x] so,

    \begin{align*}   \int_0^x (t + |t|)^2 \, dt &= \int_0^x 4t^2 \, dt\\   &= \frac{4}{3} x^3 \\  &= \frac{2}{3} x^2 (2x) \\  &= \frac{2}{3} x^2 (x + |x|). \end{align*}

The final equality follows since x = |x| for x \geq 0.
Case #2: If x < 0. Then |t| = -t for all t \in [x,0]. So,

    \begin{align*}  \int_0^x (t + |t|)^2 \, dt &= \int_0^x (t - t)^2 \, dt \\  &= 0 \\  &= \frac{2}{3} x^2 (x + |x|) \end{align*}

since x + |x| = 0 for all x < 0. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):