Home » Blog » Find a polynomial with specified values given by an integral equation

Find a polynomial with specified values given by an integral equation

Let

    \[ f(x) = 3 + \int_0^x \frac{1+ \sin t}{2 + t^2} \, dt \qquad \text{for all } x \in \mathbb{R}. \]

Find a quadratic polynomial p(x) = a + bx + cx^2 such that

    \[ p(0) = f(0), \quad p'(0) = f'(0), \quad \text{and} \quad p''(0) = f''(0). \]

Do not attempt to evaluate the integral.


First,

    \[ f(0) = 3 + \int_0^0 \frac{1+\sin t}{2 + t^2} \, dt = 3. \]

Hence,

    \[ p(0) = 3 \quad \implies \quad a = 3. \]

Next, by the fundamental theorem of calculus,

    \[ f'(x) = \frac{1+\sin x}{2 + x^2} \quad \implies \quad f'(0) = \frac{1}{2}. \]

Then, evaluate the derivative of the polynomial,

    \[ p'(x) = b + 2cx \quad \implies \quad p'(0) = \frac{1}{2} = b. \]

To get the final constant we take the derivative of f'(x),

    \begin{align*}  f''(x) &= \frac{ (\cos x)(2+x^2) - (1+\sin x)(2x)}{(2+x^2)^2} \\ \implies \quad f''(0) &= \frac{1}{2}.  \end{align*}

Therefore,

    \[ p''(x) = 2c \quad \implies \quad p''(0) = \frac{1}{2} = 2c \quad \implies \quad c = \frac{1}{4}. \]

Hence, we have

    \[ p(x) = 3 + \frac{1}{2} x + \frac{1}{4} x^2. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):