Home » Blog » Find a primitive and apply the second fundamental theorem of calculus

Find a primitive and apply the second fundamental theorem of calculus

Let

    \[ f(x) = \frac{x^4 + x - 3}{x^3}, \qquad x \neq 0. \]

Find a function P(x) such that P'(x) = f(x) (i.e., a primitive of f). Use the second fundamental theorem of calculus to evaluate

    \[ \int_a^b f(x) \, dx. \]


First, let’s rewrite f(x),

    \[ f(x) = \frac{x^4 + x - 3}{x^3} = x + x^{-2} - 3x^{-3}. \]

Then,

    \[ P(x) = \frac{1}{2} x^2 - x^{-1} + \frac{3}{2} x^{-2} \]

is a primitive of f since

    \[ P'(x) = x + x^{-2} - 3x^{-3} = \frac{x^4 + x - 3}{x^3} = f(x). \]

Then, by the second fundamental theorem of calculus we have

    \begin{align*}   \int_a^b f(x) \, dx &= P(b) - P(a) \\  &= \frac{1}{2}(b^2-a^2) - (b^{-1} - a^{-1}) + \frac{3}{2} (b^{-2} - a^{-2}).  \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):