Home » Blog » Compute partial derivatives of the given function

Compute partial derivatives of the given function

Let

    \[ f(x,y) = \frac{x+y}{x-y} \qquad (x \neq y). \]

Compute all first-order and second-order partial derivatives. Verify that the mixed partial derivatives are equal.


The first-order partial derivatives are given by

    \begin{align*}  \frac{\partial f}{\partial x} &= \frac{1}{x-y} - \frac{x+y}{(x-y)^2} = \frac{-2y}{(x-y)^2}; \\  \frac{\partial f}{\partial y} &= \frac{1}{x-y} + \frac{x+y}{(x-y)^2} = \frac{2x}{(x-y)^2}. \end{align*}

The second partial derivatives are given by

    \begin{align*}  \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right) \\   &= \frac{\partial}{\partial x} \left( \frac{-2y}{(x-y)^2} \right)  \\  &= \frac{(-2y)(2)(x-y)}{(x-y)^4} \\  &= \frac{4y}{(x-y)^3}. \\  \frac{\partial^2 f}{\partial y \partial x} &= \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) \\  &= \frac{\partial}{\partial y} \left(\frac{-2y}{(x-y)^2} \right) \\  &= \frac{2(x-y)^2 + 2y(2)(x-y)}{(x-y)^4}\\  &= \frac{-2 (x+y)}{(x-y)^3}. \\  \frac{\partial^2 f}{\partial x \partial y} &= \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) \\  &= \frac{\partial}{\partial x} \left( \frac{2x}{(x-y)^2} \right) \\  &= \frac{2(x-y)^2 - (2x)(2)(x-y)}{(x-y)^4} \\  &= \frac{-2(x+y)}{(x-y)^3}.\\  \frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial y} \right) \\  &= \frac{\partial}{\partial y} \left(\frac{2x}{(x-y)^2}\right) \\  &= \frac{(2x)(2)(x-y)}{(x-y)^4} \\  &= \frac{4x}{(x-y)^3}. \end{align*}

From this we see that the mixed partials are equal:

    \[ \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{-2 (x+y)}{(x-y)^3}. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):