Home » Blog » Compute partial derivatives of the given function

Compute partial derivatives of the given function

Let

    \[ f(x,y) = x \sin (x+y). \]

Compute all first-order and second-order partial derivatives. Verify that the mixed partial derivatives are equal.


The first-order partial derivatives are given by

    \begin{align*}  \frac{\partial f}{\partial x} &= \sin (x+y) + x \cos (x+y); \\  \frac{\partial f}{\partial y} &= x \cos (x+y). \end{align*}

The second partial derivatives are given by

    \begin{align*}  \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right) \\   &= \frac{\partial}{\partial x} (\sin (x+y) + x \cos (x+y)) \\  &= \cos (x+y) + \cos (x+y) - x \sin (x+y) \\  &= 2 \cos (x+y) - x \sin (x+y). \\  \frac{\partial^2 f}{\partial y \partial x} &= \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) \\  &= \frac{\partial}{\partial y} (\sin (x+y) + x \cos (x+y)) \\  &= \cos(x+y) - x \sin (x+y).\\  \frac{\partial^2 f}{\partial x \partial y} &= \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) \\  &= \frac{\partial}{\partial x} (x \cos (x+y)) \\  &= \cos (x+y) - x \sin (x+y).\\  \frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial y} \right) \\  &= \frac{\partial}{\partial y} (x \cos (x+y)) \\  &= -x \sin (x+y). \end{align*}

From this we see that the mixed partials are equal:

    \[ \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \cos(x+y) - x \sin(x+y). \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):