Home » Blog » Compute the derivative of the given function

Compute the derivative of the given function

Compute the derivative of the function

    \[ f(x) = \sin^n x \cdot cos (nx). \]


Using the chain rule we compute,

    \begin{align*}  f'(x) &= n (\sin^{n-1} x) \cos x \cos (nx) + \sin^n x (- \sin nx)(n) \\  &= (n \sin^{n-1} x)( \cos x \cos (nx) - \sin x \sin (nx)) \\  &= (n \sin^{n-1} x)\cos ((n+1)x). \end{align*}

The final equality follows from the identity \cos (x+y) = \cos x \cos y - \sin x \sin y since

    \[ \cos ((n+1)x) = \cos (x + nx) = \cos x \cos (nx) - \sin x \sin (nx). \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):